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An analytic solution describing an instability of a vacuum-overdense-plasma interface under the ac-
tion of a powerful laser pulse is developed. The explicit dispersion relations and the space and time
dependence of the perturbations have been obtained in the linear approximation. The influence of the
instability on the interaction process is discussed and some comparisons with previous studies are

presented.
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I. INTRODUCTION

The rapid advances in laser science and technology
during the past decade have made possible the develop-
ment of high-peak-intensity, subpicosecond, high-
contrast-ratio (~10'0) lasers. With such lasers on-target
flux densities in excess of 10'°-10%° W/cm? for pulse
duration as short as 107! sec will soon be available in
several laboratories [1]. Simple estimates show that the
ponderomotive forces of the electromagnetic field for
such intensities may be of major importance in laser-
matter interactions. The inward-directed force acting on
the electrons appears to be larger than the thermal pres-
sure gradients responsible for expansion. Hence, a very
short time after the beginning of the interaction
(t >>cop_e1, where @, is the electron plasma frequency),
the ions start an inward motion dragged by the ambipolar
field. Consequently, the plasma-vacuum interface ac-
quires an inward acceleration under the action of the
ponderomotive force of the electromagnetic field.

Acceleration of the plasma-vacuum boundary, which
has a steplike density gradient, by the ‘“light photon
fluid” produces a clear example of Rayleigh-Taylor-like
instability induced by the electromagnetic source. The
Rayleigh-Taylor instability, which has been studied for a
long time in laser-fusion plasmas, manifests itself near the
ablation surface, where the gradients of the thermal pres-
sure and density have opposite directions [2]. The pon-
deromotive force in the ‘“‘corona” of a laser-produced
plasma becomes significant in the underdense (n, <n,_,
where n, is the electron critical density) even at relatively
low intensities 7 >10'* W/cm? in accordance with Ref.
[3]. The hydrodynamic instability excited in the under-
dense corona (n,=<n,) and the resulting turbulence
(“bubble” formation) in laser fusion conditions (I~ 10'*
W/cm?) have been observed in the numerical calculations
of Ref. [4]. It is worth noting that in the conditions con-
sidered in that reference the interplay of many processes
(radiation trapping, various forms of filamentation, etc.)
was of importance along with the ponderomotive force of
the incident wave. Recently [S], bubble formation was
observed in particle-in-cell (PIC) simulations of laser-
plasma interactions using very short (wyt~200) and
powerful (IA2=10'° W um?/cm?) laser pulses, where the
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ponderomotive force of the incident beam dominated the
interaction. The plasma created in such an interaction is
transient, nonequilibrium, and nonlocal [5-7].

The ponderomotive force at the boundary of such a
plasma has been calculated recently [8]. The aim of this
paper is to solve analytically the problem of stability of
the steplike, overdense, nonlocal plasma-vacuum bound-
ary accelerated inwards by the ponderomotive force. As
is usual for this kind of problem, we will study the stabili-
ty of the initial state of equilibrium, when the pondero-
motive force supports the plasma boundary. The charac-
ter of the equilibrium of this initial static state will be
determined by introducing small initial perturbations to
the various quantities and by following their evolution.
The plan of this paper is as follows. In Sec. II the prob-
lem is formulated. The character, the form, and relations
between the initial perturbations are described in Sec. III.
The equations for the perturbations and the boundary
conditions are derived in Sec. IV. The explicit solutions
and dispersion relation are obtained in Sec. V. In Sec. VI
we discuss the results and possible influence of the insta-
bility on the interaction process, compare the results with
previous studies, and estimate the following turbulence
characteristics. We draw the conclusions in Sec. VII.

II. FORMULATION OF THE PROBLEM

Let us suppose that a powerful plane-polarized laser
beam is incident along the normal to a target (the z axis
coincides with the direction of the normal) and creates on
the target surface an energy flux density exceeding the
relativistic value I >I,=4n,m,c>=1.14X 10"[A(um)] 2
W/cm? (n., m,, ¢, and A are electron critical number
density, electron mass, speed of light in vacuum, and
wavelength of the incident light in micrometers, respec-
tively). The incident-field components have the form

E(E,,,0,0); B(0,B,,,0)~exp{ —iwy +ikyz} .

Here ky=wy/c. In accordance with Refs. [6,7], we as-
sume that the beam ionizes the atoms in the target in a
time shorter than a femtosecond due to both field (tunnel)
and electron-impact ionization processes. Hence the
laser beam interacts with a homogeneous, collisionless
plasma which has a nonlocal relation between the current
and the electric field inside the plasma. For the case con-
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sidered here the only force acting on the electrons in the z
direction is the Lorentz force

F=(1/¢)[jXB]. (1)

The spatial dependence of the magnetic field, electric
current, and ponderomotive force averaged over the laser
period were calculated in Ref. [8]:

; CBo « dfexp(ifn) z

Jx(m)= f itiole 0 "L
_p l_L [~ dosinon

Bym=Bo 1= 57 fo 1+i6°

Here B, is the magnetic-field value on the vacuum-
plasma boundary (z =0) and /; is the field penetration
depth into the plasma (the skin depth). For the case of
low absorption, one can estimate B, as

B,=2B, (3)
and relate it to the intensity of the incident light
I=cB2 /4 . 4)

Later in this paper we will use the value of the pondero-
motive force on the boundary of the plasma (z =0) while
solving the problem of the stability of the interface. This
value can be obtained by evaluating the integrals in (2)
along with the value of the electric current

cB

(Z —0)__]0 §4 IO
5 (5)

F (z=0)= 2 Bo

z LY 47l

For further simplification let us use for the skin depth the
formula for the stationary skin effect, thus neglecting its
slow dependence with time (¢ >>w, ') and incident inten-
sity, which are characteristic of the nonstationary anoma-
lous skin effect [6,7]. Hence we assume that

lszc/wpe~ne_l/2 (6)

and, consequently, F,~ j,~n, /2, thus preserving the
density dependence of the force, which is most important
for studying the problem of the hydrodynamic instability.
We make also the usual assumptions for linear stability
problems in magnetohydrodynamics, namely, quasineu-
trality, incompressibility, and assume the plasma to be a
perfect conductor. Thus the full set of equations for the
problem can be written as follows:

- p
at (VV)v Fp — ax
1 0B

E=— >
rot p at
rotB=4T7Tj , (7
divB=0, divv=0,
P 4 (vw)p=0.

at
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We neglected the displacement current in (7) in accor-
dance with the condition

p>>B3/4mc? or ¢>>V,=B,/(4mp)/?,

which is valid for a dense plasma (w,, >>w,, where o, is
plasma frequency) with nonrelativistic ion motion and
V 4 is the Alfvén velocity. As follows from the first equa-
tion of (7), the initial state of equilibrium corresponds to
the situation when the ponderomotive force is balanced
by the thermal pressure gradient in the matter.

III. INITIAL PERTURBATIONS

Let us introduce small perturbations to all initial quan-
tities, namely, velocity, pressure, mass density, current,
and electric and magnetic fields: u, &p, p+6p, jo+8j,
E+e, By+h. In the problem being considered, the elec-
trons start to move instantaneously, dragging the ions
after time of the order of a)l,el. Hence the initial pertur-
bations are related to the initial inhomogeneities as well
as to the perturbations created by the initial electron
motion (electron seeded perturbations [5]). It follows
from the previous studies of the flute, or interchange, in-
stabilities in a low-density plasma [9], that the hydro-
dynamic response is of major importance even for a rare
plasma. We will consider the influence of the electron
motion on this instability elsewhere. Here we consider
only hydrodynamic instabilities, assuming the ions
respond immediately to the ponderomotive force, and we
thus neglect any fast electron oscillations. The develop-
ment of the electromagnetic perturbations is related to
the plasma motion (10). Hence

e= _%‘(uxBo) y
(8)

oh
Ezrot(uXBo) .

The perturbation of the current is related to both the per-
turbations of the density and velocity:

. 9j
8j= + .
j ap 8 3u Su
Making use of (5), (6), and (8), one obtains
. ¢ . 6
=-roth+j,2 .
8j o roth+ j, 2 9)

Taking into account the identities of vector analysis
and the solenoidal nature of the velocity and the magnet-
ic field, one can reduce the equation for the magnetic-
field perturbation to a simpler form,

oh
3t

For the sake of simplicity we will neglect in the further
analysis the space derivative of the initial magnetic field
in Eq. (10). This term does not change the final form of
the dispersion relation but makes the equation for the
space dependence of the perturbations more cumber-
some.

=(BoV)u—(uV)By . (10)
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IV. EQUATIONS FOR THE PERTURBATIONS
AND BOUNDARY CONDITIONS
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We will look for solutions in the form of an expansion
into the normal modes u, 8p, 8p, etc. [10]

One can now linearize the set of equations (7) taking - . .
into acoount (8){10% [ exp{yt+ik,x+ik,y}f(2)dk,dk, . (13)
pi‘r-‘l=i(joxh)—l(ajx]g,o)—i R Let us reduce the set (12) to the equations for the ve-
¢ ¢ ox locity and pressure components only:
gl-—_-(B(,V)u , )
o B0 2y ik Du,)— ik
Vpuxz uxb—l X uZ -1 X p >
5j=éroth+joép— , (1) +my
P .
. . _JoBo . .
divh=0, divua=0, ypu, = o7 ik,u, —ik,8p ,
d5p + _QB:()
Making use of ju(jy;0;0), By(0;B;0), and the depen- ypuZ:JOBO (ik, u,+Du,)
dence of density on the z coordinate only, one can reduce cY
(11) to the form
B cB
g Bo s 3% - —4#; (—k2u, +ik, Du, +D%,)
dt Z ox
duy 1., dp joDp
dt  ¢’%7 3y T
du, 1 1 38p
=——joh,——By(8j), —
P~ar oM 08/ )x dz 12 divu=0 .
_a_ll=Boa_u , 8j=iroth+j0—§£ ,
ot oy 4m 2p We denote here k*=k?+k} and D=d /dz. Now elim-
divh=0 . diva=0 adp " ZQE -0 inating u,, u,, and 8p from (14) one can reduce (14) to an
’ > ot oz equation for u, alone:
. 2
JoBo
1 B(z) B(z) JoBo Dp k:?kyz cy
—D(pDu,)—k;——D*u,= {1—k}—— ——— 5 -2 o (k’u, . (15)
P 4y dmpy®  peyt 2p kpy 2 Bo
Y 4y

Substituting into (15) the formula (5) for j, and denoting

JoBo _ kV3 Bj
Yo 2¢cp 3, 7 4mp (16)
Eq. (15) can be reduced to the form
2 v3(Dp)
Y_D(pDu, )=k} ViD*u,=u,k* \y*— K2V} — OTP
P P
4k3‘ky2 yg

k*  yi—klVy
(17)
Here V4 is the familiar Alfvén velocity. Note that for
the problem considered the magnetic field in (16) is the

time-averaged magnetic field of the incident electromag-
netic wave, while in the conventional definition of the

Alfvén velocity B is a constant magnetic field applied to
the plasma. The boundary conditions which must be
satisfied at the vacuum-plasma interface are u, and h and
are both continuous. Due to the second equation of (11)
only one condition of continuity of u, remains. The
second boundary condition follows from (17) by integrat-
ing it over the infinitesimal distance across the interface.
We obtain

{v2(pDu,)} i 20— {k2VE(Du )22 0= —y3k(u,), - -

(18)

V. SOLUTIONS

In a plasma where the density is constant, Eq. (7)
reduces to the simple form
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4k 2k2 4
Du,=k*|1— ;f o _a,. (19)
)

This equation has the general solution

u,= A exp{*qz} , (20)
where A is a constant and q is defined by

g% 4k,fky2 v$

Frint e 4 2_p2p22 21D

k k (y"—k,;Vy)

The solution of (20) with a positive sign has to be used for
the region z <0, while the solution with a negative sign
corresponds to the region z >0 in order to obtain the per-
turbations vanishing at infinity. Introducing (20) into
(18), we obtain the dispersion relation for the problem:

vik=q [yz—kszﬁ ). (22)

Combining (21) and (22) and solving for the growth rate
of the instability one can obtain the explicit relation

a2k |

1+ X

(23)

r=kVityd

Substituting (23) into (21), it is also easy to obtain the ex-
plicit expression for g,

2,2 |71
g*=k* |1+ ]:4y . 24

Thus Egs. (20)-(24) represent the full formal solution of
the problem.

VI. DISCUSSION

There is a clear analogy between the case considered
here and classical Rayleigh-Taylor instability of a heavy
fluid accelerated by air pressure, or, of instability of the
interface between a heavy fluid imposed over a light one
in a gravitational field [10,11]. Let us consider the case
when k,=0. In this case the positive sign in (23) corre-

y
sponds to an instability with a growth rate

y=(k, V% /31)? . 25)

Hence the quantity V% /31, plays the role of the accelera-
tion of gravity in our problem. Note that the other
branch of the dispersion curve (with the positive sign)
corresponds to surface waves propagating in the direction
perpendicular to the lines of magnetic force. The other
important property of the growth rate that has been ob-
tained is its strong density dependence for long-
wavelength perturbations along the magnetic field
(k,l; <<1). In this case, it follows from (25) that

yi~p 172
When k, =0, we obtain from (23)
k, V5
¥} o= 223k, 1) . (26)

x 31,
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In the long-wavelength limit (3k,/; <<1) the dispersion
relation (26) has two branches. One branch corresponds
to unstable modes (positive sign), and the second one re-
lates to waves propagating along magnetic force lines
(similar to Alfvén waves). In the short-wavelength limit
(3k,I;>>1), there is only unstable branch. The growth
rate in this case is density independent and has the form
similar to the relation for the frequency of Alfvén waves:

yi~klVy .

It is instructive to compare the solutions that have been
obtained to the case when a constant magnetic field was
applied parallel to an unstable interface of two fluids in a
gravitational field [10,12]. In this case the magnetic force
acts as surface tension, associated with the tension along
the magnetic force lines. On the contrary, in the case
considered in this paper all components of the pondero-
motive force lead to an increase of the growth rate of the
instability.

To understand the difference, let us compare the driv-
ing forces for both cases. In the case of the fluids in the
gravity field, the gravitational force is responsible for the
instability and the resulting fluid motion. The magnetic
force, and the associated tension, appears only after the
beginning of the fluid motion and acts in a direction op-
posite to the gravitational force, thus leading to stabiliza-
tion. In the problem considered here the ponderomotive
force (which has initially only the term related to the gra-
dient of the energy density) supports the plasma in the in-
itial equilibrium state, and is also the source of motion
and the instability. The term associated with the tension
along the magnetic force lines, appears due to the devel-
opment of the perturbations and has the same direction
as the unperturbed ponderomotive force. This is easy to
understand, from a formal point of view if one expresses
the ponderomotive force in terms of the magnetic field
alone [10]

1 9 IB]?

1 L2
c

9z 8w  Ox; (B.B;) . @7)

The last term in (27) is associated with the tension along
the magnetic force lines. Note that (27) is valid only in
the case when it is possible to neglect the displacement
current.

Let us estimate the characteristic value of the growth
rate of the instability y, for the case when the wavelength
of the perturbation equals the skin depth. For this case
the growth rate is density independent. Thus, inserting
k=2m/Il; and | ;=c/w),, (cope=47rezne /m,) into (25),
one can obtain

R e’Z; I
3 meMi (;3 ’

vo= (28)
Here Z;, M;, e, and m, are ion and electron charges and
masses, respectively, I =cB izn /41 is the intensity of the
incident beam, and c is the speed of light in vacuum.
Now we evaluate (28) for the conditions of the PIC simu-
lations of Ref. [5], where an I[A(um)]>=1.2X10"° W
um?/cm? laser beam interacted with a plasma
(M;/m,=1836) having an initial density profile in the
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form of a linear rise from O to 4n, over a distance 4\, and
a constant density for the next A,. For those conditions
the instability growth time from (28) is y, ! <4 fs. It is
easy to estimate that after a time of (2-3)y; ! the insta-
bility enters the nonlinear regime (ak = 1, where a is an
amplitude of the perturbation), and turbulence will result.
It follows from the two-dimensional calculations of Ref. 5
that at a time wyt =225 (¢ > 100 fs) well-developed tur-
bulence exists with a characteristic bubble (turbulent
eddy) size of 10c¢ /@y ( ~1.5A,). Hence the simple theory
of this paper suggests, in agreement with the numerical
simulations of Ref. [5], that the interaction of a very in-
tense laser with a low-density plasma (for example, with
foam targets, or a plasma with preformed-density gra-
dient) enters the interaction regime with the turbulent
plasma after several tens of femtoseconds.

Let us examine the ponderomotive force induced insta-
bility and the resulting turbulence from a more general
point of view. For this purpose we present the Euler
equation in the form for a velocity vortex rotv,

-a~rotv—rot(v Xrotv)=— Lrot(rotBXB) .

ot 4mp
One can draw at least two conclusions from this equa-
tion. First, in the quasistationary case, when the vortices
(bubbles) are simply flowing with the inward plasma
motion, the space scale of the vorticity depends only on
the space scale of the driving magnetic field. Second, the
fluid velocity is of the order of the Alfvén velocity [10]
(note that for the case considered in this paper the mag-
netic field in the definition of the Alfvén velocity is the
magnetic field of the incident wave averaged by the laser
period). Hence the characteristic scale of the vortex has
to be of the order of magnitude of the initial field scale
(e.g., the skin depth).

VIII. CONCLUSION

To conclude, we have presented in this paper analytical
solutions for the problem of the instability of a
vacuum-overdense-plasma interface driven by the pon-
deromotive force of a powerful laser beam. The explicit
formulas for the instability growth rate and spatial
dependence of the perturbations are obtained in the
linear approximation. The main features of the growth
rate of the instability which are derived are its depen-
dence on plasma density along with its strong dependence
on the intensity of the incident beam. This instability is
similar to the familiar Rayleigh-Taylor instability, where
the term V% /31, [V , =B, /(4mp)'/? is the Alfvén veloci-
ty and /; is the field penetration depth] plays the same
role as the acceleration due to gravity. One can also con-
sider this instability as an example of unstable (with the
growing amplitude) Alfvén waves, driven by the pondero-
motive force of the incident laser beam. The characteris-
tic time for the instability growth, ¥ ~!, appears to be of
the order of several femtoseconds for an incident flux
density of the laser beam in excess of 10!®* W/cm?. Thus
one can expect the transition time to the nonlinear and
turbulent regime of the plasma motion to be of the order
of tens of femtoseconds. Hence the theory presented sug-
gests that the intense (1 > 10'® W/cm?), short (~ 100 fs)
laser-beam—low-density-plasma interaction proceeds for
most of the interaction time in the regime of turbulent
plasma motion. The development of further theory will
take into account the density and field gradients, as well
as the initial electron motion.

ACKNOWLEDGMENT

The author gratefully acknowledges Professor B.
Luther-Davies for useful comments.

[1] E. M. Campbell, Phys. Fluids B 4, 3781 (1992).

[2] E. G. Gamaly, in Nuclear Fusion by Inertial Confinement,
edited by G. Verlarde, Y. Ronen, and J. M. Martinez-Val
(CRC, Boca Raton, 1991), Chap. XIII.

[31W. L. Kruer, The Physics of Laser Plasma Interactions
(Addison-Wesley, Reading, MA, 1987).

[4] E. J. Valeo and K. G. Estabrook, Phys. Rev. Lett. 34, 1008
(1975); Kent Estabrook, Phys. Fluids 19, 1733 (1976).

[5]S. C Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon,
Phys. Rev. Lett. 69, 1383 (1992).

[6] E. G. Gamaly, A. E. Kiselev, and V. T. Tikhonchuk, in
Short-Pulse High-Intensity Lasers and Applications, edited
by H. A. Baldis, SPIE Proc. Vol. 1413 (SPIE, Bellingham,

WA, 1991).

[71A. A. Andreev, E. G. Gamaly, V. N. Novikov, A. N.
Semakhin, and V. T. Tikhonchuk, Zh. Eksp. Teor. Fiz.
101, 1808 (1992) [Sov. Phys. JETP 74, 963 (1992)].

[8] E. G. Gamaly, Phys. Fluids B (to be published).

[9] A. B. Mikhailovsky, Theory of Plasma Instabilities, 2nd
ed. (Atomizdat, Moscow, 1977), Vol. 2, p. 165. In Rus-
sian.

[10] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Sta-
bility (Oxford, England, 1961).

[11] G. Taylor, Proc. R. Soc. London Ser. A 201, 192 (1950).

[12] M. Kruskal and M. Schwarzschild, Proc. R. Soc. London
Ser. A 223, 348 (1954).



